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AUTOMATIC EXTRACTION OF LINEAR FEATURES USING
MORPHOLOGICAL OPERATIONS AND MARKOV RANDOMFIELDS

C. Nagaraju*, L. S. S. Reddy* & D. Ramesh Babu*

In this paper we have presented a model-based approach to the automatic extraction of linear features, in the images. This
method consists of two steps. The first step utilizes local information related to the geometry and radiometry of the structures
to be extracted. It consists of a series of morphological filtering stages. The resulting image serves as input to a line-following
algorithm, which produces a set of line segments. In the second step, a segment linking process is carried out incorporating
contextual, a priori knowledge about the object shape, with the use of Markov random field (MRF) theory. In this approach
the extracted line segments, produced by the morphological operators, are organized as a graph. The linking process of these
segments is then achieved through assigning labels to the nodes of the graph using domain knowledge of extracted line
segments measurements and spatial relationships between the various line segments. The interpretation labels are modeled
as a MRF on the corresponding graph and the linear feature identification. This type of problem is formulated as MAP
(maximum a posteriori) estimation rule.
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1. INTRODUCTION

Several approaches for linear feature extraction have been
proposed in the literature, most of them dealing with the
problem of linear feature identification by using either
synthetic aperture radar (SAR) images or optic (visible range)
images. In this method, we combined mathematical morpho-
logy and MRF technique for linear feature identifications in
Images. It is a model-based approach that combines both local
and global criteria about the geometry and radiometry of the
linear structures of interest. The use of MRF theory succeeds
in extending the results of the morphological filtering towards
a better extraction of linear features.

2. LOCAL ANALYSIS

The features we search for linear featured objects are
characterized by their geometry and image appearance. The
linear featured objects like roads appear on an optical
airborne image as thin, elongated structures with a maximum
width w

max
. They are locally rectilinear, with each object

pixel belonging to a line segment that is longer than a
minimum length l

0
 and each object segment is considered

as a bright structure with respect to its surrounding. All this
information can be integrated and extracted using
mathematical morphology. A series of morphological
operators, adapted to the geometrical characteristics of the
objects we want to identify, are successively applied to the
input image. A line-following algorithm is then applied to
the resulting image in order to produce a set of line segments.

Step 1: We want to remove dark structures from the
image, without influencing the shape of the bright elongated
structures of interest. For this reason,  we apply a
morphological closing by reconstruction, using a square flat
structuring element (SE) of size equal to w

max
/4.

Step 2: Linear featured object segments correspond
to elongated bright regions with a certain width. In order
to eliminate bright structures that do not belong to any
line segment with minimum length l

0
, we apply on the

reconstructed image of step 1 a morphological opening
by using l

0
 pixels long linear structuring elements

successively oriented in 32 possible directions. The
resulting value at each pixel is the supremum of all these
directional openings.

Step 3: In this step, we eliminate very wide linear bright
structures that correspond to objects larger than the specified
objects. Initially, we perform a morphological closing
operation with a square SE of size w

max
/4, in order to remove

remaining dark spots from the image. After this, we retain
only bright structures with widths less than w

max
, by applying

an opening top-hat operator with a flat square SE of size
w

max
. The remaining structures correspond to the roads that

we want to extract. Finally, we apply once again closing
with a flat square SE of size w

max
/4, in order to make the

regions inside the roads more uniform.

Step 4: The final result of step 3 gives a higher response
at the points belonging to the roads compared with the
surrounding background. An easy way to extract the road
regions would be the application of a threshold to the
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resulting image as in [1]. Unfortunately, this leads to partial
detection of the roads disconnected segments, together with
some spurious results corresponding to false alarms. In order
to overcome this problem, and to produce one pixel width
line segments, we extract, from the resulting image of step
3, the pseudo-medial axis of the objects, over which we
apply a line-following algorithm using the orientation of
the SE which produces the supremum of the directional
openings. The pseudo-medial axis of the objects is extracted
by performing the watershed transformation on the response
image .

3. GLOBAL ANALYSIS

The global analysis step of our approach is based on the
earlier work of Tupin et al. [10] and is carried out on the
level of the road segments. A graph is built, which contains
all possible connected line segments that are created by using
some connectivity criteria. The object identification process
is then treated as an optimum graph labeling problem. This
is carried out by associating an energy function to the line
segments, based on a Markovian model of linear featured
objects. Given the observation process, the minimization
of this energy function will produce the best configuration
of the line segments.

Step 1: Graph Creation

We will denote by S
det

 the set of the detected line segments.
Each segment of S

det
 is defined by its endpoints. Two line

segments of S
det

 can be connected if their distance is less
than a fixed threshold, and if the angle between them is less
than a specified value. We create a new set S

con
, which

corresponds to all possible connections between the
elements of S

det
. Let S = {S

det
, S

con
}, with its cardinality

denoted by N.

For each line segment i ε S we assign a saliency measure
R

i
 defined as:

R
I 
= I/ (|θ − ′α| + 1) (1)

where I is the mean value of the morphological object
detection response, along the line segment is the line
segment orientation, and ′α is the mean value of the
morphological object detection orientation response, along
the line segment. We associate a graph structure (G) to the
set S, each segment i belonging either to S

det
 or S

con
 being

one of its nodes, and two nodes i and j being linked by an
arc if they share a common endpoint. In order to introduce
contextual knowledge with the use of a Markovian model,
we must define a neighbourhood system. The
neighbourhood N

i 
of each node i contains all the line

segments that have a common endpoint with i. For each
segment i ∈ S

det
 we define cliques that correspond to both

of its end points. Each of these cliques contains all the
segments that share the specific extremity. If N

det
 denotes

the number of elements of S
det

, then the total number of
cliques equals 2 xN

det
.

After the definition of our neighborhood system, we
attach attributes to the nodes and arcs of G. The arc between
nodes i and j is associated with a value θ

ij
 representing the

angle between the two segments. For each node i ∈ S, we
associate a normalized length l

i
 and an observation value d

i

that reflects the probability of this segment belonging to
the object. d

i
 should increase when, adjacent to it, segments

belong also to the object, something that rises from the
continuity that characterizes our region of interest. For this
reason we express d

i
 as a function of the saliency measures

r
k
:

d
i
 = max

j∈NI
 {(ri + rj)/2}  (1)

The identification of the object will be carried out with an
appropriate labeling of the graph. A label l

i
 is associated to

each node i with l
i
 = 1 if i is a part of the object and l

i
 = 0

otherwise. The optimum configuration L = (l
1
, l

2
,…; l

N
) of

the segments of S, given the observation process D = (d
1
,

d
2
,…, d

N
), can be estimated with a MAP criterion that

maximizes the posterior probability distribution given by:

P(l | d) = p(d|l) P (l)/p(d) (2)

where P(l) is the prior probability of labelings l, p(d/l) is
the conditional probability distribution function (p.d.f.) of
the observations d, also called the likelihood function of l
for d fixed, and p(d) is the density of d which is a constant
when d is given.

Step 2: Energy Definition

We consider that the conditional probability distribution
p(d/l) corresponds to a Gibbs distribution. By assuming
independence between the different observations (d

i
) and

supposing that the conditional probability distribution of d
i

only depends on the labelings l
i
, we can write

p(d| l) = ΠN
i=1

 p(d
i
/l

i
) α exp(−5∑N

i=1
 V(d

i
/l

i
)) (3)

where V(d
i
/l

i
) denotes the potential of segment i. This type

of potential can be deduced from the observation field D
and reflects the likelihood of every segment as belonging
or not to a road.

The conditional probability distributions p(d
i
/l

i
) are

learned from an experiment after a manual segmentation of
the objects, performed by a human observer. After this
experiment, we notice that object segments may have almost
any observation value d, while non-linear segments have
observations with values greater than a threshold t. Based
on this heuristic; the following linear conditional potentials
have been chosen:

V (d | 0) = 
 <



if

1 otherwise

d
d t

t  and V(d | l) = 0, ∀d
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In order for the potentials to correspond to a probability
distribution, we normalize the values V (d|l) so that:

= = − = =∫ ∫
1 1

0 0
( 1) exp[ ( 1)] 1p d x dx V d x dx

This condition holds for the potentials that correspond to
object segments, as they are equal to zero. For the non-linear
object segments, potentials of the form:

V(d
i
/0) + log Z

0
 are used; Z

0 
denotes a normalization factor

given by:

Z
0
 = (1 – t)(1/e)−t(1/e –1),with e = exp(1).

Step 3: Prior Probability of Labeling

The previous models are based on the assumptions that
objects like roads are long structures with low curvature
and that intersections between them are rare. By considering
the label field L as a MRF, we can use once again the MRF-
Gibbs field equivalence in order to introduce a priori
knowledge to the object identification task. The prior
probability of labelings P(l) can be expressed in terms of
an energy function U(l) as:

P(L = l) = 1/Z
1 
exp(–U(l)) (4)

where Z
1
 is the partition function and U(l) = ∑

c∈C
 V

c
(l). The

clique potentials V
c
(l) carry a priori information about the

geometrical characteristics of the features to be extracted.
Every clique c contains one segment belonging to S

det
(with

length ldet), along with the segments of S
con

 (with length l
con

)
that share the same extremity. Based on the main
assumptions of our object model, we have chosen the
following potentials for every clique c:

∀i ∈ c, li = 0 ⇒ Vc (l) = 0 = 0 (5)

�!i ∈c/li = 1 ⇒ V
c
 (l) = K1 + 1 – l

i
det + log Zo (6)

�!(i, j) • c2D li = lj = 1

⇒ Vc (l) = sin (θ ij) + 1 – l
i
det + l

j
con + 2 logZo (7)

in all other cases,

V
c
(l) = K

2
 ∑

i/i∈c
 li (8)

Equation 5 describes a null situation, which does not have
to be penalized or favored with respect to the a priori
assumptions about the object structure. In equation 6, by
choosing K

1
 > 0 we penalize short objects: i.e. the clique

potential is high for a clique with only one isolated segment,
except when this isolated segment has a high normalized
length l

i
det (close to 1). High values of K

1
 favor more

connected configurations. Equation 7 imposes the constraint
of low curvature and at the same time penalizes
configurations with short detected and long connecting
segments. Finally, K

2
 > 0, in equation 8, makes less probable

the appearance of crossroads.

The additional factors logZ
0
 and 2logZ

0
, in equations 6

and 7 respectively, facilitate the comparison between the

clique potential values and the conditional potentials of the
null configurations (where all the segments of the current
clique are labeled as 0). In the case of a clique with one
segment labeled as 1, the factor K

1
 + 1−l

i
det in equation 6 is

directly compared with the conditional potential component
V (d

i/
0) of the current segment i. In the case of a Clique

with two segments i, j labeled as 1, the factor sin(θ
ij
) +

1–l
i
det + l

j
con of equation 7 is compared with the sum of the

conditional potential components V(d
i
| 0), V(d

j
 | 0).

Step 4: Posterior Probability

The posterior probability P(l/d) can be also expressed in
terms of a global energy function U(l|d), which can be
deduced from the potentials described in the previous steps:

P(l|d) = = ∈− =∑ + ∑
1
2

1exp( ( | )), ( | ) ( ) ( )N
i c Cz U l d U l d V di li Vc l

(9)

The MAP configuration of the line segments can be
estimated by minimizing the energy function U(l|d).

4. RESULTS

5. DISCUSSION AND CONCLUSIONS

The model-based technique for linear feature extraction, in
digitized images, which combines both local and global
criteria; its main advantage is the high detection performance
in heavily textured environments along with its ability of
identifying elongated structures independently of their size.
Concerning the local analysis step, we utilized the
morphological operators proposed by Chanussot et al.[1],
in order to identify linear structures with specific geometrical
properties. Additionally, we extracted the linear feature main
axis and applied a line-following algorithm. This process
produced a set of line segments with meaningful orientation
properties and eliminated a sufficient number of false alarms.

Road BMP After Morphological Operations. After MRF Model

Original BMP. After morphological operations. After MRF Model

Original BMP After Morphological operations. After MRF Model
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In the next step of our work, we created a Markovian linear
model; similar to the one proposed by Tupin et al [6.] in
order to introduce contextual knowledge to our analysis. At
the same time, we proposed some necessary modifications
in order to incorporate additional information about the
nature of the line segment candidates. These include a
discrimination between the initially detected segments (S

det
)

and the ones corresponding to the possible connections
(S

con
), the introduction of a new observation measure (d

i
)

that reflects more efficiently the likelihood value of each
segment and the use of fewer number of potential parameters
(t, K

1
, K

2
). One of the most important limitations of our

method is that it is not entirely unsupervised, due to the
setting of five parameters, two of them concerning the local
analysis step (w

max
, l

0
) and three (t, K

1
, K

2
) influencing the

linking process. The parameters w
max

, l
0 
are based on a priori

knowledge about the size of the object. On the other hand,
the proposed ranges of the parameters t, K

1
, K

2
, give optimal

results for this type of environments, independently of the
size of the linear features of interest. Further analysis should
be carried out towards the problem of identifying segments
with high curvature, especially when this is higher that the
maximum object width found in the image and in the choice
of a more efficient skeletonization process for the extraction
of the object main axis. Finally, improvements could be
obtained during the connection step, by searching for the
best path between extremities of the segments we want to
connect, instead of assuming that all objects may be found
by connecting a set of initially detected segments. Even the
modified version of this method could not produced accurate
result for noise Images.
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